
Spring 2024 TST Meeting
Prof. Patrick G. Bridges

Recommendations from
2023 Annual Review

Center for Understandable, Performant Exascale Communication Systems

Recommendations (1)
Summary of software use cases currently being explored

• Current Mini/Proxy Applications:
• Comb: LLNL communication performance benchmarking tool
• MiniAero: Manetevo mini-application that does Navier-Stokes equations for explicit unstructured finite volumes
• Hermes: New global spatial sorting benchmark
• MiniGhost/CabanaGhost: Existing and in-development regular halo exchange benchmark
• CLAMR: LANL cell-based adaptive mesh refinement (AMR) mini-app, using the L7 communication framework
• Beatnik: New fluid interface benchmark to exercise FFT and mesh/particle remap communications
• CabanaMD/CabanaMPM: Cabana particle/mesh library molecular dynamics and material point benchmarks

• Current Applications/Libraries
• xRAGE: LANL Eulerian radiation/hydrodynamics code

• Cellar = token library = communication framework in xRAGE (objects are called “tokens”)

• hypre: LLNL library of preconditioners and solvers featuring multigrid methods for the solution of large, sparse linear systems of equations
• AMG2023 – ATS5 driver benchmark
• SuiteSparse – collection of wide range of sparse matricies

• Parthenon: LANL performance portable block-structured adaptive mesh refinement framework
• HOSS: LANL hybrid multi-physics software package using a range of element-based methods

• Upcoming Mini/Full Applications: SPARC (Siva R. to provide Ifpack2 SPARC matrix), EMPIRE via MiniEM, SUNDIALS (for Raja), UME

3

Center for Understandable, Performant Exascale Communication Systems

Recommendations (2)
Define MPI0, ExaMPI, MPI Advance, Beyond MPI, and any new MPI
abstraction terms
• ExaMPI: Our C++ research MPI implementation
• Beyond MPI: Application-oriented abstractions that leverage our findings,

unconstrained by legacy MPI
• MPI Advance: Application-oriented abstractions that extend and push the

frontier of existing abstractions
• MPI0: New low-level communication primitives for use by library writers for

building new abstractions

4

Recommendations (3)
• Please modify the software stack slide to more accurately convey your evolution in thinking about MPI abstraction layers,

and what is being accomplished with each instantiation of each MPI abstraction – see later slides

• Also provide a table of proxy apps, e.g. Beatnik, being used to test various abstractions – in progress
• Regular halos: Comb, MiniAero, CabanaMPM, MiniGHOST (making new Cabana version)
• Irregular halos: CLAMR, AMG2023, HYPRE SuiteSparse, MiniEM, Trilinos Ifpack 2 solve, New Irregular exchange benchmark
• Global exchanges: Beatnik (FFT, particle/mesh redistribution), Hermes (new global spatial sorting benchmark)

• Please think about developing MPI communication pattern extraction tools – in progress

• Look at other programming models and solver packages to generalize MPI abstractions - Raja/SUNDIALS upcoming

• When presenting data and results, please provide more context on the HPC configurations and experimental conditions
– in progress

• Numerous data is being collected in a variety of configuration and conditions, yet it is difficult to draw conclusions at this
point. We encourage you to take a data analytics and experimental design approach to determine the factors that most
influence the HPC communications – examining use of Benchpark and Hatchet as tools to help enable this

Current changes/challenges

PY 2020-21 PY 2021-22 PY 2022-23 PY 2023-24 PY 2024-2025

Irregular Halo Summative AssessmentRegular Halo Summative AssessmentHalo Formative Assessment

Partitioned P2P GPU SupportPartitioned P2P Prototype

Research Areas

Assessment

Abstraction
Development

Application
Optimization

Performance
Modeling and
Visualization

Proxy Application
Development

Research
Infrastructure and

Outreach

Global Communication Summative AssessmentGlobal Communication Formative Assessment

Coupled Communication
Summative Assessment

Coupled Communication
Formative Assessment

Project Formative Assessment Project Summative Assessment

Neighbor Comm.
OptimizationNeighbor Comm. Prototyping Partition/Neighbor

Comm. Integration

Partition/Neighbor Comm. GPU Support

Other Lab Regular HalosHIGRADFiesta/Comb

AMG in ApplicationsHYPRECLAMR

Partitioned CommunicationGPU SupportExaMPI Infrastructure

Coupled Comm. RooflineSimple Collective Roofline AnalysisGPU Halo Roofline Communication
Analysis

Initial ReleaseLow-Order Z-Model
Implementation

Proxy ReleaseInitial
Implementation

High-Order Z-
Model Design

Partitioned + Neighbor
Comm. Modeling

GPU Neighbor Comm.
Modeling

Partitioned Comm.
Modeling

Experiment ManagementBasic Code/Data Infrastructure

Partitioned CollectivesLocality-Aware GPU CollectivesMPI Advance Initial Release

Datatype Modeling CPU/DPU Partitioning Modelling

Application
Identification

Compilation of principles for
new abstractions

Z-Model and Global-Comm. Lab Codes

Coupled Z-Model CodeAMG, AMR, Particle Push in Lab Codes

Release of
coupled proxy

Open and NNSA
code integration

Updated 5-year Project Roadmap

Improved high-order data exchange

Creation of Communication Representative Benchmark Suite

Spec. of Integrated Communication Primitives

MPIX Integrated Primitives

Testing of integrated primitives in lab
settings (xRage, Trilinos, etc.)

Release of coupled proxyIntegration with open and
NNSA codes

Complex Collective Modeling

Integrated PrimitivesMPI0 Primitives

Coursework Material Development and Community/Diversity Outreach

Changes/Challenges/Status
• Personnel

• Thomas Hines left project
• Multiple lab internships scheduled (Evelyn, Nicole, Grace, Nick, Gerald)
• Ongoing challenge: recruiting students to join project
• Rebalancing/rescheduling work due to personnel changes

• Vendor interaction
• NDAs executed with AMD, HPE
• Speed of interaction/meaningful response from some vendors is lacking

• Many papers being written/submitted
• Paper accepted for CCGrid on irregular benchmarking
• Multiple papers on irregular communication API and optimizations submitted to SC
• ICPP and Cluster papers submissions planned

Center for Understandable, Performant Exascale Communication Systems

Overall Plan Discussion: Overview
Before break (30 minutes):
 Benchmarking and Performance Studies
 Communication Characterization
 Education and Outreach
After break: API/Abstraction Development and Evaluation

Center for Understandable, Performant Exascale Communication Systems

Overall Plan: Benchmarking and
Performance Studies

Center for Understandable, Performant Exascale Communication Systems

Communication performance studies are
painful
• Hard to use real applications and input decks for communication development

• Require significant expertise to build, configure, run, and scale
• Wide range of communication techniques and behaviors

make it hard to isolate, understand, and optimize specific patterns
• Communication tightly enmeshed with complex compute makes it difficult to try out novel

communication abstractions
• Point efforts in this area

• Communication-representative mini-applications work in this area: LAMMPS/miniMD,
HACC/SWFFT (Aaziz et al., 2018), CTH/miniAMR (Aaziz et al., 2019), others

• New miniapps with interesting input decks if you know where to look (ATS 5 acquisition
benchmarks): MiniEM, AMG2023, Block AMR and Neutron Transport benchmarks, etc.

• Approach: Extract information from application runs to drive creation communication
proxies and benchmarks across the full space of HPC communication

Center for Understandable, Performant Exascale Communication Systems

What’s the full space, what are the gaps?
• Need full spectrum of communication types

• Workload information from app through
proxies to macro/micro benchmarks

• Regular/irregular, tree communication, global
communication, remapping

• Static and dynamic variants of all of these
• Example gaps

• Breadth of irregular exchanges in real
applications (Derek later)

• Sorting in real codes, e.g., spatial sorting of
partially-sorted finite elements or particles

• Remapping communications (Beatnik)
• Tree communication

• Need help from the community
• Flesh out the full of patterns to care about
• Identify applications to use to find this data
• Start fleshing out lines between

apps/benchmarks

xRAGE HIGRAD HOSS

Irreg.
Comm.
Pattern

Hermes
Spatial

Sort

Beatnik

Apps

Proxy/Mini

Macro
Benchmark

Micro
Benchmark

SPARCEMPIRE

AMG2023
/Suite
Sparse

LAMMPS

UMEComb

MiniE
M

MiniAe
ro

SMB

Center for Understandable, Performant Exascale Communication Systems

Beatnik: A Proxy for Remapping and
Global Communication
• Release 1.0 available

• https://github.com/CUP-ECS/beatnik
• Scalable low-order solver (uses HeFFTe)
• Non-scalable brute force high-order solver
• Structure for implementing other solvers

• Current development – Jason’s Poster
• New cutoff-based solver that remaps between

surface and spatial distributions
• Adding support for irregular spatial meshes
• Collecting communication profiles
• Developing additional input decks

• Potential Future:
• Addition of surface remeshing support
• Integration with CFD miniapp for multi-scale proxy

https://github.com/CUP-ECS/beatnik

Center for Understandable, Performant Exascale Communication Systems

Irregular Data Communication
• Struggled with arbitrary datatypes

• Generic datatypes can be faster for small
irregular data

• Generic datatypes prohibitively slow for large
irregular data

• The improvements to the right were not
reproducible (mvapich bugs!). The
slowdowns to the right were.

• Simple performance studies showed benefits
of complex APIs for this not worth it.

• Key remains getting rid of unnecessary
synchronization for datatype handling

• Stream and kernel triggering of communication
is the right way to do this, not convoluted APIs

GPUDirect non-contiguous datatypes

GPUDirect contiguous datatypes

Kokkos-packed
buffers

Kernel launch
overhead

Generic Pack Overhead

Center for Understandable, Performant Exascale Communication Systems

Any Questions?
Thank you!

16

Center for Understandable, Performant Exascale Communication Systems

Overall Plan: Communication
Characterization

Center for Understandable, Performant Exascale Communication Systems

High-level Roadmap
• Goals:

• To understand which communication characteristics affect performance
• Obtain a deeper understanding of communication patterns outside of general timing metrics

• Such an understanding would allow the creation of models or benchmarks that represent the true
communication pattern(s) of applications

• For example, understand the performance implications of an application using hand-crafted collectives instead
of MPI equivalents

• How:
• Instrumenting Applications
• Instrumenting MPI implementations
• Analyzing the data we get

• Nick (UNM) has a Sandia Internship scheduled for this summer, with the focus on trying
to model how much time can overlapped by reducing synchronization costs

18

Center for Understandable, Performant Exascale Communication Systems

Example App: xRAGE (specifically the Cellar framework)

• Wanted to look into how the framework was performing at large scales
• Caliper timings can paint a picture of general framework effectiveness, but

doesn’t describe communication pattern
• Decided instrument two key areas:

• Communication pattern creation:
• Call site and ID (same across all ranks), ranks involved, and creation time
• The base direction(s) and count(s) of data to be exchanged
• Example:

• Rank 0: 0 | B1:1-200, T2:53, F4:90, | 1.23 | T0
• Rank 1: 0 | B0:200-1, B2:5-400,B3:1500-1600, | 0.97 | T0

• Communication usage:
• ID, direction (scatter or gather) ,size of datatype involved (char, int, double, etc.), time
• Example of three uses: 0:0:8|1.01, 1:0:8|2.45, 0:0:4|0.78

19

B (both) (rank) : (To #, From #)
T (to) (rank) : (To #)
F (from) (rank) : (From #)

Center for Understandable, Performant Exascale Communication Systems

Selecting the Right Parameters
• Attempted to determine what parameters from irregular

applications are needed to recreate communication
patterns

• Number of partners, size of message(s), stride, etc.
• General flow pictured on right

• Chosen parameters are captured by manual logging
• Generates distributions based on collected data
• Distribution data is then used by re-creation benchmark

• Paper accepted to CCGrid24 (May 6th-9th, 2024)
• Quantifying and Modeling Irregular MPI Communication
• Carson Woods will present

20

Pre-processing

Instrumentation
Outputs to file

Recreation
Benchmark

Recreated Irregular
Pattern

Various Apps of
Interest

Center for Understandable, Performant Exascale Communication Systems

Instrumenting Applications
• Have explored several applications (xRAGE, Cabana, hypre, CLAMR, Parthenon), but

each was manually instrumented
• Leverage learning to create a more portable approach

• Likely to be an MPI eXtension Library
• Also likely to exist within the MPI Advance collection of libraries

• New APIs to let users control which MPI calls are a part of a “pattern”
• Mark a start/end of a region?
• Record additional parameters?
• Still considering what options to provide – happy to discuss 

• Exploring the MPI “Python-ization” tools to write boilerplate wrappers
• Intercept all MPI calls, record requested parameters
• Integration with Caliper (e.g. auto caliper regions if using this library), Kokkos profiling, NVTX

21

Center for Understandable, Performant Exascale Communication Systems

On the MPI Implementation Side
• Last year, we showed some profiling work using

ExaMPI
• Used internal profiling to help optimize ExaMPI’s

general performance
• Middle – Visualization

of events in ExaMPI
• Right – Comparison of

ExaMPI and Spectrum
MPI running Comb
(visualized with Hatchet)

• Had also started exploring
tracing MPI messages

22

Center for Understandable, Performant Exascale Communication Systems

Profiling MPI Performance Behaviors
• Goal: Understand the behaviors of many different kinds of messages as

they travel through an MPI software stack.
• First, isolate the stages of an MPI implementation to identify areas of poor performance
• Later, determine factors that influence performance at each stage during the lifespan of a

message
• Two TNTech students (Evelyn and Grace) have internships scheduled with LLNL

this summer; Riley Shipley is overseeing this effort
• This will be made possible through two new tools:

• A C++ logging library that will capture timing data for the entire message life cycle
• A Python-based app that will calculate and visualize performance probability distributions

based on the captured data

23

Center for Understandable, Performant Exascale Communication Systems

Capturing MPI Implementation Behaviors
• Aim is to capture message performance data across the entire MPI

implementation stack, including:
• Setting up network resources
• Setting up buffers/packing/unpacking
• Time spent in networking libraries
• Matching

• Amount and types of data available
depends on stage in the MPI stack

• Need a library that is flexible to handle
changing or missing data

24

1
2
3
4
5
6
7

int main(int argc, char**argv) {
MPI_Init(&argc, &argv);
// ...

MPI_Send(…,dst=1);// Message to rank 1
MPI_Allgather(…); // Message to rank 1
}

Both MPI calls could produce similar
looking messages on Rank 1

Center for Understandable, Performant Exascale Communication Systems

Analyzing the Data - Examples

25

Center for Understandable, Performant Exascale Communication Systems

Any Questions?
Thank you!

26

Overall Plan: Education and Outreach

Center for Understandable, Performant Exascale Communication Systems

Educational Activities
• Organized the 10th Workshop on Extreme Scale MPI (ExaMPI 2023) at SC 2023
• Tutorial on MPI Advance - Optimizations and Extensions to MPI at the NNSA-University

Workshop on Exascale Simulation Technologies (NUWEST) workshop
• Organized SIAM PP24 mini-symposium on Realistic Proxy Applications and Datasets for

Heterogeneous Architecture Scalable Communication
• Organizing the 4th Workshop on Compiler-assisted Correctness Checking and

Performance Optimization for HPC (C3PO) at ISC 2024
• Hackathons

• Weekly online mini-hackathons with students to help with their research
• April 9-10, 2024 – in-person hackathon for students focused on specific research problems

• Course development – focusing on homework assignments

28

Center for Understandable, Performant Exascale Communication Systems

Courses Offered – Spring 2024
• UNM

• CS 491/591 Special Topics: HPC
• CS 591 Special Topics: Scalable Systems Seminar

• TNTech
• CSC 4760/5760 Parallel Programming
• CSC 7750 HPC Seminar

• UA
• CS 691 Special Topics in HPC

29

Center for Understandable, Performant Exascale Communication Systems

Assignment #1
• Goal: Implement basic point-to-point send and receive primitives
• Explore different low-level networking primitives

• Sockets
• Light-weight Communication Interface (LCI)
• Libfabric/UCX

• Using ExaMPI infrastructure to support process startup and
teardown and integration with Slurm

30

Center for Understandable, Performant Exascale Communication Systems

API Specification

31

Center for Understandable, Performant Exascale Communication Systems

Next Assignments
Assignment #2

• Extend Assignment #1 to
include

• tags
• eager and rendezvous

protocols
• non-blocking communication

and progress

Assignment #3

• Implement collective
primitives with different
algorithms

• reduce/allreduce
• gather
• scatter

32

Center for Understandable, Performant Exascale Communication Systems

TNTech – CSC 4760/5760 Parallel Programming
• Standard concepts of parallel programming

(speedup, Flynn, etc)
• Focus on MPI and Kokkos Programming
• C++ as underlying programming language
• MPI+Kokkos Programming as advanced topic
• Specifically skip: OpenMP and CUDA in favor of

Kokkos as the high-level, on-node programming
model

• Rudiments of cluster usage and access issues
• Current book: Robey & Zamora
• Future: Our own book

33

Center for Understandable, Performant Exascale Communication Systems

TNTech – CSC 7750 HPC Seminar
• For PhD students and interested

MS students
• Data reorganization
• Fault tolerance
• Polyalgorithms
• Many-task systems (WAMTA

2024 workshop highlights)

• Methods of HPC research
• Special topics include

• Space-filling curves
• Meta-programming
• FFTs
• Shared materials from PSAAP

April Hackathon (RDMA)
• How to formulate research

34

Center for Understandable, Performant Exascale Communication Systems

Outreach Activities
• UNM

• PSAAP staff member and student leading and mentoring team for SC Student Cluster
Competition

• Dr. Bienz served as a panelist on Breaking Barriers: The Career Odysseys of Diverse Women
in Computing organized by SIAM Activity Group on Equity, Diversity, and Inclusion (SIAG-EDI)
at SIAM PP24

• TNTech
• Seminar on HPC research to the graduate student club
• Meet with and encourage diverse high school students (CS 38-30 students) to pursue CS

degrees
• UA

• Seminar on HPC to the ACM UA Student Chapter
• Guest lecture on HPC in CS 121 The Discipline of Computing course

35

Center for Understandable, Performant Exascale Communication Systems

Questions?

36

Center for Understandable, Performant Exascale Communication Systems

Break

Overall Plan: API Development

Center for Understandable, Performant Exascale Communication Systems

Communication Abstraction Stack View

Application
MPI

Advance

MPI
Advance

MPI

MPI0

verbs

New Portability Library
Communication Abstractions

MPI
Advance

MPI

MPI0

UCX

MPI0

MPI0

MPI0

libmp

Beyond
MPI

Beyond
MPI

MPI0

Portals

Beyond
MPI

Beyond
MPI

Beyond
MPI

MPI0

libfabric

• Goal is to develop new abstractions for
applications and libraries

• Development at each level is driven by
careful assessment, benchmarking, and
modeling

• Through the first two years, focus has mostly
been on Advance-level primitives

• Shifting focus to MPI0 and Beyond
abstractions

Center for Understandable, Performant Exascale Communication Systems

Major API Development Thrusts
• MPI Advance

• Optimized Irregular Collective API Abstractions (next) - Amanda
• Profiling of communication patterns (previously discussed) – Derek

• Portability Library Primitives:
• New Cabana/Kokkos fine-grain compute/communicate primitives – Patrick
• Communication interfaces for Kokkos – Evan

• Low-level Communication Primitives - Derek

Center for Understandable, Performant Exascale Communication Systems

Irregular Communication
Amanda Bienz, UNM
April 11, 2024

Sparse Matrix Operations
1. Form communication pattern

No existing MPI API

2. Create graph communicator
MPI_Dist_graph_create_adjacent

3. Initialize communication
MPI_Neighbor_alltoallv_init

4. Per-iteration communication
MPI_Start
MPI_Wait

Problems with Current Approach
1. Form communication pattern

No existing MPI API

2. Create graph communicator
MPI_Dist_graph_create_adjacent

3. Initialize communication
MPI_Neighbor_alltoallv_init

4. Per-iteration communication
MPI_Start
MPI_Wait

All applications perform own optimizations

Problems with Current Approach
1. Form communication pattern

No existing MPI API

2. Create graph communicator
MPI_Dist_graph_create_adjacent

3. Initialize communication
MPI_Neighbor_alltoallv_init

4. Per-iteration communication
MPI_Start
MPI_Wait

Large overhead from graph communicator

Problems with Current Approach
1. Form communication pattern

No existing MPI API

2. Create graph communicator
MPI_Dist_graph_create_adjacent

3. Initialize communication
MPI_Neighbor_alltoallv_init

4. Per-iteration communication
MPI_Start
MPI_Wait

Neighbor collectives are unoptimized

Topology Discovery
• MPIX_Alltoallv_crs performs

sparse dynamic data
exchange under the hood

• Standard implementations
wrapped in this API,
available in MPI Advance

• Also, includes
MPIX_Alltoall_crs

Locality-Aware Topology Discovery

More on Topology Discovery
• Andrew Geyko’s poster
• A More Scalable Sparse Dynamic Data Exchange

paper in submission
available on arxiv https://arxiv.org/abs/2308.13869

https://arxiv.org/abs/2308.13869

Graph Communicator Creation
• Already know topology

information (discovered as
a part of the previous work)

• This information is passed
to graph communicator
creation

• August 2023 Hackathon :
students created a
topology object to replace
graph communicators

Graph Communicator Creation

Graph Communicator Creation Persistent Neighborhood Collective
Initialization

Per-Iteration Start/Wait

More on Topology Objects
• Gerald Collom’s Poster
• Optimizing Neighbor Collectives with Topology Objects

paper in submission

Locality-Aware Neighbor Collectives
• Neighbor collectives

typically wrap standard
P2P communication

• Multiple messages
between sets of regions
(e.g. nodes)

Process
q

Node n Node m

Locality-Aware Neighbor Collectives
• Neighbor collectives

typically wrap standard
P2P communication

• Multiple messages
between sets of regions
(e.g. nodes)

• Data sent multiple times
between single set of
regionsNode n Node m

Locality-Aware Communication

54

All processes per node are active in communication

Neighbor Collectives in HYPRE
• Per-iteration costs greatly

reduced on coarse levels

• Gerald’s poster

• Optimizing Irregular
Communication with
Neighborhood Collectives and
Locality-Aware Parallelism
(https://arxiv.org/pdf/2306.0187
6.pdf)

55

https://arxiv.org/pdf/2306.01876.pdf
https://arxiv.org/pdf/2306.01876.pdf

Center for Understandable, Performant Exascale Communication Systems

More on Neighbor Collectives
• Gerald Collom’s Poster
• Optimizing Irregular Communication with Neighborhood Collectives

and Locality-Aware Parallelism published at ExaMPI workshop at
SC23

Questions?

57

Center for Understandable, Performant Exascale Communication Systems

Fine-grain Communication APIs
Prof. Patrick Bridges

58

Center for Understandable, Performant Exascale Communication Systems

Communication limits on scaling
• GPU kernel launches and synchronizations add latency to communication in GPU systems

• Launches and syncs for data packing and unpacking
• Launches and syncs for sends and receives
• Syncs on compute when strong scaling
• Difficult to hide communication behind application or pack/unpack compute

• Currently examining how this limits strong scaling in GPU codes
• Starting with miniAero, UME or a Cabana mini-application are possible next steps
• Goal: Communication limits on strong scaling of Ifpack2 on a SPARC matrix
• Nick Bacon will be examining this in his internship at Sandia this summer

• API Design Approach:
• Top down pass starting from high-level application/library communication primitives and how they can be be

modified to enable hiding or eliminating these costs
• Bottom up pass starting from NIC triggering primitives to understand what primitives could efficiently do

59

Center for Understandable, Performant Exascale Communication Systems

Where are the costs hiding in the
application communication primitives?

• Halo gather
includes kernel
launches and
syncs for data
packing and
unpacking

• Explicit
synchronization
between compute
kernel and next
communication
invocations

60

Center for Understandable, Performant Exascale Communication Systems

Stream triggering to eliminate some costs

• Fence between computation and gather removed
• Fences between packing, sending, receiving, and unpacking removed inside implementation of gather primitive
• Same type of primitives should also work for stream triggering Cabana AoSoA, xRAGE Token, and other irregular halo primitives
• Currently implementing with Cray stream triggering primitives on Tioga, Chicoma
• Our previous studies show modest weak-scaling benefits, will be working to quantify strong scaling benefits
• Still significant kernel launch overheads, especially with non-fused irregular buffer packing

61

Center for Understandable, Performant Exascale Communication Systems

Early Send to Remove Packing Launch
• Leverage nested parallelism to fuse packing and compute kernel

• DefineTiled versions of Cabana Arrays, IndexSpaces, and Halos
• Tiled halo can use thread team to parallel pack outgoing data
• Tiled halos can use either GPU partitioned send or RMA put/get
• Also provides access to block shared memory for compute and packing
• Single kernel iterates over owned tiles/cells to both compute and pack data to send

• Can also just fuse packing by iterating only over boundary tiles/cells
• Doesn’t require cooperative launch, fine-grain tasking, or other specialized

scheduler support to avoid deadlocks
• But receives and unpacking still unfused and stream triggered

62

63

Center for Understandable, Performant Exascale Communication Systems

Early Work to Fuse Receive Unpacking
• Thread team needs to poll

for get/recv completion
• Fuses unpacking with

compute and packing
• Requires support to avoid

deadlock
• Runtime system support:

fine-grain tasks or
cooperative launch

• Hardware scheduler:
preemption or new features

• Could reduce compute
efficiency

• Lots of tradeoffs and
parameters to tune and
model in these approachs

• Extension to unstructured
more complex, plan to
examine in Cabana, UME

Center for Understandable, Performant Exascale Communication Systems

Need new communication primitives to
make building these abstractions easy
• Explicit MPI Progress abstraction that integrates community stream triggering ideas
• Enumerating potential design principles for new channel abstraction

• Support both one-sides and two-sided operations with convenient, easy-to-understand semantics
• Separate expensive bulk operations (setup, matching, remote completion) from inexpensive data

movement operations
• Match related buffers independently of the set of operations (send, receive, put, get) that will be performed on

them
• Match on collective channel operations as well to support asynchronous collective matching
• Indicate buffers ready for use (send or receive) independent of specifying operations being performed

• Use host and stream synchronization for heavyweight bulk operations
• Use partitioning, trigger increments, and polling for lightweight fine-grain operations
• Focus on semantics and usability in modern languages (C++, etc.) over C/Fortran interface
• Pay close attention to needs of performance portability frameworks – need to contact Raja team

65

66

Questions?

67

Center for Understandable, Performant Exascale Communication Systems

On-Node and Off-Node Parallel
Programming Integration: Kokkos
and MPI
Evan Drake Suggs
Anthony Skjellum

Collaborators at Sandia:
Jan Ciesko
Stephen L. Olivier

Center for Understandable, Performant Exascale Communication Systems

Introduction

● The Kokkos programming system provides in-memory advanced data structures,
concurrency, and algorithms to support advanced C++ parallel programming

● MPI provides a widely used message passing model for inter-node communication.
● This work improves integration of MPI and Kokkos with performance and productivity

benefits for exascale applications and libraries.
● Present strategy: Kokkos objects can be passed directly to new MPI API functions. ​
● Already could be used to enhance Trilinos and Cabana-based applications, etc.
● Work has motivated greater attention for Kokkos+MPI integration.

Center for Understandable, Performant Exascale Communication Systems

MPI_Kokkos_Send & Recv Implementation

// How people used to program MPI+Kokkos
Kokkos::View<int**> recv_check(recv_buf, n, n);
MPI_Recv(recv_check.data(), n*n, MPI_INT, 1, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
// new method - object aware and polymorphic (C++ with C look)

Kokkos::View<double**> A(“New Method View”, n, n);
MPI_Recv(A, 1, tag, MPI_COMM_WORLD);

// next method - subviews
 MPI_Send(subview(A, make_pair(2, 5), make_pair(4, 6)), 1, tag,

MPI_COMM_WORLD);
 MPI_Recv(subview(A, make_pair(6, 9), make_pair(1, 3)), 0, tag,

MPI_COMM_WORLD);

MPI_Send(View_t * buf, int dest, int tag, MPI Comm comm)

MPI_Recv(View_t * buf, int source, int tag, MPI Comm comm)

Heat Reduction Tests
● This test uses the heat reduction code in Kokkos tutorials comparing new bindings with traditional

methods
● The Kokkos-bindings have a slightly better execution time, especially for the increased 1,024 size

Center for Understandable, Performant Exascale Communication Systems

Summary
● This work integrates two programming models, MPI and Kokkos.

○ Immediate Productivity Goals
○ Working toward performance enhancements next

● Implemented several MPI bindings with Kokkos View objects as their primary
buffers without sacrificing the C++ nature of the Kokkos View.

● Using ExaMPI benefitted the project, since it enables the use of templates to
better interact with Kokkos. This direction can lead to greater performance.

● New APIs performed similarly to the original APIs.
● New APIs open avenues for greater performance integration within an MPI

implementation.

Center for Understandable, Performant Exascale Communication Systems

Next Steps
● Near term

○ Co-developing with Sandia an MPI-Kokkos interop for standard MPI (wrappers)​
○ New NCCL-based GPU performance work​ and device-specific support (MPI_Send<View, class,

Device>). [Nicole Avans, internship]
● Medium term

○ Transparently use partitioned and persistent communication where possible, pipelined
communication, as well as (de)serialization concepts

○ Testbed for new functions, such as byte-mapping-based transports.
● Longer term

○ A creation of new backends to increase speed for specific types of Views (Views on GPUs, non-
contiguous, etc.).​

○ This work has impact on C++23 and a new C++ MPI language interface for MPI-5+.

Center for Understandable, Performant Exascale Communication Systems

Questions?

74

Center for Understandable, Performant Exascale Communication Systems

Low-level API Design
(bottom-up approach)
Derek Schafer - UNM
April 11th, 2024

Center for Understandable, Performant Exascale Communication Systems

Low-level API Development
• Wide range low-level APIs for programming high speed fabrics

• All mutually incompatible, many vendor-specific
• Many don’t support all features of modern NICs (triggering, network collectives)
• Hard to use for developers of performance portability libraries

• MPI0 (appropriately renamed) should provide an easier-to-use interface that
provides access to all modern NIC features

• Current work:
• Understand NIC features and their interfaces, particularly for GPUs
• Enumerate principles and needed features of API (Thomas Hines’s MPI0 work)

• Following this: Create an API that makes using these functions easier for the
end user

76

Center for Understandable, Performant Exascale Communication Systems

NVIDIA – LibMP and MLX4 libraries
• Lightweight messaging library built on top of LibGDSync (and IB Verbs)
• APIs to support GPUDirect asynchronous communication

• MPI used to setup IB connections
• No MPI calls are used for actual communications
• Uses only point-to-point and one-sided communications (no collectives)
• No tags, no wildcards, no data types

• LibMP seems to be brittle research-ware
• Tends to lockup in weird ways
• Not great at handling unexpected messages

• Talking to Ryan Grant (Queen’s University), who has done similar work (but with
mlx4 driver)

77

Center for Understandable, Performant Exascale Communication Systems

Libfabric Triggering
• Designed to enable the delaying of an operation until a condition has been met

• Uses completion counters (that track other operations) or manual counter
adjustments from application itself

• Has mechanisms for triggering from GPUs; vendors still iterating on best approach
• HPE CXI provider support for triggering through Deferred Work Queue libfabric

abstraction
• Extended version of triggering APIs designed for application-level collectives
• Support a variety of operations (messages, tagged, rma)

• Creating DWQ objects is fairly straightforward, though providers may have limitations
• If anyone wants to talk code, we have code to show :)

78

Center for Understandable, Performant Exascale Communication Systems

Where we are now
• Working with HPE

• Trying to get running on test systems (Chicoma, Tioga)
• Frontier access would be helpful!

• CXI libfabric provider source is public on GitHub (with CXI extensions)
• HPE GPU Transport Layer and MPIX_ libraries source code is not available
• But still helps to understand their papers and models
• E.g. what kind of host progress is needed for MPIX_Enqueue_recv()

• Current: Use these operations to implement the higher-level stream and kernel
triggering APIs described earlier

• Follow-up: Collaborate with Ryan Grant to design performance-portable
interfaces for GPU triggering

79

Center for Understandable, Performant Exascale Communication Systems

Any Questions?
Thank you!

80

	Spring 2024 TST Meeting
	Recommendations from�2023 Annual Review
	Recommendations (1)
	Recommendations (2)
	Recommendations (3)
	Current changes/challenges
	Updated 5-year Project Roadmap
	Changes/Challenges/Status
	Overall Plan Discussion: Overview
	Overall Plan: Benchmarking and Performance Studies
	Communication performance studies are painful
	What’s the full space, what are the gaps?
	Beatnik: A Proxy for Remapping and Global Communication
	Irregular Data Communication
	Any Questions?
	Overall Plan: Communication Characterization
	High-level Roadmap
	Example App: xRAGE (specifically the Cellar framework)
	Selecting the Right Parameters
	Instrumenting Applications
	On the MPI Implementation Side
	Profiling MPI Performance Behaviors
	Capturing MPI Implementation Behaviors
	Analyzing the Data - Examples
	Any Questions?
	Overall Plan: Education and Outreach
	Educational Activities
	Courses Offered – Spring 2024
	Assignment #1
	API Specification
	Next Assignments
	TNTech – CSC 4760/5760 Parallel Programming
	TNTech – CSC 7750 HPC Seminar
	Outreach Activities
	Questions?
	Break
	Overall Plan: API Development
	Communication Abstraction Stack View
	Major API Development Thrusts
	Irregular Communication
	Sparse Matrix Operations
	Problems with Current Approach
	Problems with Current Approach
	Problems with Current Approach
	Topology Discovery
	Locality-Aware Topology Discovery
	More on Topology Discovery
	Graph Communicator Creation
	Graph Communicator Creation
	More on Topology Objects
	Locality-Aware Neighbor Collectives
	Locality-Aware Neighbor Collectives
	Locality-Aware Communication
	Neighbor Collectives in HYPRE
	More on Neighbor Collectives
	Questions?
	Fine-grain Communication APIs
	Communication limits on scaling
	Where are the costs hiding in the application communication primitives?
	Stream triggering to eliminate some costs
	Early Send to Remove Packing Launch
	Slide Number 63
	Early Work to Fuse Receive Unpacking
	Need new communication primitives to make building these abstractions easy
	Slide Number 66
	Questions?
	On-Node and Off-Node Parallel Programming Integration: Kokkos and MPI
	Introduction
	MPI_Kokkos_Send & Recv Implementation
	Heat Reduction Tests
	Summary
	Next Steps
	Questions?
	Low-level API Design�(bottom-up approach)
	Low-level API Development
	NVIDIA – LibMP and MLX4 libraries
	Libfabric Triggering
	Where we are now
	Any Questions?

